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Motivation 2-1

Motivation: The Kelly Criterion

[] Wealth in horizon T, given discrete returns X; € R¥

T k
Wr(f)=Wo ] [1+D X (1)
t=0 j=1

[J Growth-optimal fraction f = [f, fp, ..., fk]T
[] Myopic solution, following Kelly (1956) and Breiman (1961)

k
f* = argmax |E {log Wr(f)} | Y £ <1 (2)

N

j=1




Motivation

Motivation: Stable Laws

10°

Log-Frequency

[
<
[

Normalized Log-returns

Figure 1: Normalized log-densities of all assets and
Gaussian (a = 2), Stable (o = 1.7), Cauchy (o =1)
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Methodology 3-1

Outline

Non-) Linear Assets

3) Estimation
4) Implementation




Data 4-1
Linear Assets

[J n = 4331 days of price data (Bloomberg)

Descriptives DAX30 S&P500 EMUSOV
px T (in %) 4.74 4.07 3.65

o x T2 (in %) | 24.88 20.22 1.48
Skewness 0.04 —0.12 0.17
Kurtosis 6.22 10.12 22.33

o 1.604+0.06 1.59+0.06  1.60+0.06
6 —0.204+0.17 —0.16+0.16  0.00+0.14
% TYe 0.24 0.22 0.02

SxT 0.17 0.16 0.04

Table 1: Log-Return descriptives with ML estimates under a-stability, 1997-2015
including confidence intervals (99%) for stability o and skewness 8
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Nonlinear Assets

[J Long Puts (128) of DAX and S&P 500 as nonlinear functions
of the underlyings in T
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Figure 2: Implied Volatility over Moneyness /X
(Strike/Price)




Model

Spectral Measures for growth

(] Spectral Measure

My (Wi (f)} = / H(x) gk (x)dx

(] Growth Measures G, { W (f;)}
» Arithmetic mean for
¢E(X) =1
» Geometric mean for

¢Elog(X) = log

» Median for
OMedian (x) = 6(x = 0.5)
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Model 5-2

Spectral Measures for security

[J Unrestricted Kelly optimization - larger bets than a risk-averse
investor would accept (Hausch and Ziemba, 1985)

[] Security Measures Sy { Wr(f;)}

» Quantile for

» Expected Shortfall for

des. (x) = at1(x < @) (8)




Model

Growth-Security Frontier

[] Set of possible combinations

U=I[G{Wr(f)},S{Wr(f)}],

given f feasible

[] Efficient points given as

U* = [G{Wr(f*)}, S{Wr(f")}]

f* = argmax [G {Wr(f)}]
FERK

st. S{Wr(f)} <b, beR

Expected logarithm of wealth E[log WT(f)]

Security constraint S[WT(I)]

Figure 3: Growth-security fron-
tier




Estimation

The class of Lévy-Stable Distributions
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Figure 4: Normalized log-densities of all assets and k
Gaussian (a = 2), Stable (« = 1.7), Cauchy (v =1)



Estimation

Elliptically contoured stable distributions

() Let W ~ S(a/2,8,1,0), 0 <a<?2, 8= (coswa/4)2/°‘ and

G ~N(0,T), T = AAT
(] Then X is elliptically contoured stable if
X EWV26 45
£ WY2AZ +65, Z ~N(0, Iy)

CAY 46, YV ~ Ex(a,0, I, 0)

[] The according characteristic function of X is

ox(u)=E (iuTX) = exp {— (;uTquﬁ + iuT5} , (10)

I being the scale and § € R¥ location
// L
L N




Estimation 6-3

Nonparametric Scaling Approximation

[J Elliptically contoured stable distribution

Xt ~ Ek(O(, 0, rt, (51—), rt = AtA:— (11)
[ Distribution for frequency T, t | T
XT =T x Xt ~ Ek(O[,O, Trt, Tdt) (12)

[] Scale the non-parametric daily distribution of X; from
daily frequency t to frequency T
» Normalization to radially symmetric stable

Y = (Xt — d:) A,_Tl, Y ~ Ex(a,0,lk,0) (13)
» Scale to horizon distribution in T

X7 =067 +AY, X1 ~ E(,0,T7,67), TT=AAT  (14)
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Estimation 6-4

Nonparametric Scaling Approximation

Figure 5: Changes in location and scale (two dimensions):
Xi ~ Ex(a,0,T¢,8:), Y ~ E2(,0,1,0) and X ~ Ex(e,0,T1,57)
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Estimation 6-5

Parameter Estimation

(] Fractional Moments
—+o00
E|X|P :/ |X|PF(X)dX (15)

> finitefor 0 < p<a
» infinite for p > «

(] Under simulation

» stability «, scale I' and location ¢ need to be estimated
[J Under scaling approximation

» stability o not necessary




Estimation 6-6

Estimating the location J;

(] For elliptical stable laws with 1 < o < 2
61{- = EXt < 00 (16)

[] Decision theory
» 0-1 loss (Nolan, 1997)
» quadratic loss

[ Lack of theory for shrinking under «-stability as in Hansen
(2015)




Estimation 6-7

Estimating the scaling matrix I,

[ Given that X is elliptically stable,
Yu, u' X ~ S(a,0, (uTI'u)%, u' o) (17)
[J The k(k +1)/2 parameters of the scale matrix " are estimated
by
My =17 (18)
M =3 {7*(L.1) =7 =75} (19)
[ 42(1,1) = (1,1)T(X;, X;) = X; + X; and +; is the univariate
scale parameter of asset j, estimated by MLE
[] T;; depends solely on directions (1,1),(1,0) and (0,1)
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Implementation
Optimization

(] Specific optimization with
» 5 linear assets (long only)
» 1 short asset (short only)
» 128 non-linear assets (long only)
(] Quantile restricted optimization
] Wp =100, 0 < b <1 with « =0.001

f* = argmax Gy {Wr(f)}

fERK
Wr(f)
.t. 1-— <
134
> h<
j=1
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Implementation

Discrete wealth return distribution, b = 0.15
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Figure 6: Discrete wealth returns without and with Options
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Implementation

Discrete wealth return statistics, o = 0.001

Portfolio (in %) Without ~ With
Geometric mean 6.03 8.85
Arithmetic mean 6.33 10.9
Standard deviation 4.98 26.94
Minimum —29.76  —28.19
Qo.1% —15.0 —15.0
Q19 —6.02 -8.1
Q10% 1.33 —0.95
Qs0% 6.25 5.27
Qo0 11.3 23.35
Qoo 20.92 119.12
Maximum 67.26 871.57
Table 2: Discrete wealth return

statistics (in %) without and with op-

tions

Fractions Without With
DAX30 0.01 0.74
S&P500 0 1.29
EMUSOV 2.36 1.88
EMBI 0.33 0.48
BCI 0 0

SHORT —1.69 —3.89
Put DAX 7 0.14
Put S&P500 / 0.36

Table 3: : Portfolio fractions without

and with options
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Implementation

7-4

Improvement in terms of quantile, o = 0.001
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Figure 7: Kelly-Quantile-Frontier

without and with Options



Implementation 7-5

Conclusion

[J Constrained Kelly optimization - growth-optimal strategy,
given personal preferences

[J Non-linear assets - beneficial for quantile and Expected
Shortfall restrictions

[ Stable laws - non-normal limiting behavior for financial market
returns
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Appendix 8-1

General i.i.d. - Breiman (1961)

foj - frj
[ Investment strategy A= | © .. 1 | =[f---f7]
fox - fra

» investment fractions f; from time t to T € N*
> opportunities j to k € N

Pt.j
] Security price vector p; = |
Ptk
Pt,j
Pt—1,j
(] Return per unit invested x; =
Pt,k




Appendix 8-2

Asymptotic outperformance

Theorem
[ Myopic log-optimal strategy N* = [f* --- f¥]
) Significantly different strategy N\
E {log Wr(A)} — E{log Wr(A)} — 00, (21)
C1 Kelly investor dominates asymptotically

lim Wr(N') 2% 0 (22)

T—o0 WT(/\)

Leo Breiman on BBI:| i\




Appendix 8-3

Minimize time to reach goal g

Theorem

[J Let T(g) be the smallest T, such that W, > g, g >0
[J If equation (21) holds,

Ja>0 1A, g (23)

such that
E{T"(g)} —E{T(g)} < o, (24)
(1 L - independent of

(1 A* asymptotically minimizes the time to reach goal g

N




Appendix 8-4

Time invariance

Theorem

] Given a fixed set of opportunities the strategy is

» fixed fraction
» independent of the number of trials T

N =7 = =17 (25)




Appendix 8-5

The class of Lévy-Stable Distributions

[J Fourier transform of characteristic function ¢x(u)
1
S(X|a,pB,7,0) = 2/gox(u) — exp(—iux)du
i
[] Characteristic function representation, 0 < o < 2, # 1

log ox(u) = iud —~|u| “{1+iB (u/|u])tan (am/2)} (26)

[ Stability or invariance under addition

nlog ox(u) = iu(nd) — (nvy)|ul “{1 +iB (u/|ul)tan (am/2)}
[ Limiting distribution of ni.i.d. stable rv.,, 0 < a <2

n

n~ > (X —8) 5 S(a, 8,7.0) (27)

i=1




Appendix 8-6

Unconstrained Kelly fraction for « =2, =10

[J X ~ N(u, X) and risk free rate r > 0
W, (F) = W0{1+r+fT(X—r)} (28)

[] Taking logarithm and expectations on both sides leads to
E [log { W,(f)/ Wy }], which is expanded in a Taylor series

1 1
f) = E{ log(1 ——(u—1r)"f — 5 fTTf
() =€ {log(1 4 1) + 1 (0= 10 T - e
(29)
[] From quadratic optimization (Héardle and Simar, 2015)
f* =Y (u—1r) (30)
Boo(f*) = r+ F*TLf*/2 (31)
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